Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Numerical Study of the Laminar Flame Speed of Hydrogen/Ammonia Mixtures under Engine-like Conditions

2024-06-12
2024-37-0020
In the effort to achieve the goal of a climate-neutral transportation system, the use of hydrogen and other synthetic fuels plays a key role. As battery electric vehicles become more widespread, e-fuels could be used to defossilize the hard-to-electrify transportation sectors and to store energy produced from renewable and non-continuous energy sources. Among e-fuels, hydrogen and ammonia are very attractive because they are carbon-neutral and their oxidation does not lead to any CO2 emissions. Furthermore, hydrogen/ammonia mixtures overcome the issues that arise as each of the two fuels is separately used. In the automotive sector, the use of either hydrogen, ammonia or their blends require a characterization of such mixtures under engine-like conditions, that is, at high pressures and temperatures. The aim of this work is to evaluate the Laminar Flame Speed (LFS) of hydrogen/ammonia mixtures by varying the thermodynamic conditions and the molar composition of the reactants.
Technical Paper

Advanced H2 ICE development aiming for full compatibility with classical engines while ensuring zero-impact tailpipe emissions

2024-06-12
2024-37-0006
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. Current emissions are rebounding from a brief decline during the economic downturn related to the Covid-19 pandemic. To get back on track to support the realization of the goal of the Paris Agreement, research suggests that GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century.2 Although these are averaged global targets, every sector and country or market can and must contribute, especially higher-income and more developed countries bear the greater capacity to act. In 2020 direct tailpipe emissions from transport represented around 8 GtC02e, or nearly 15% of total emissions.
Technical Paper

Assessment of Equivalent Properties for Flat Multilayered Panels

2024-06-12
2024-01-2943
The use of lightweight complex heterogeneous structures increased during the last years principally in the transportation sector (i.e., aviation and trains). This sector's technology enhancement pursues reducing long-term CO2 emissions and increasing efficiency. Lightweight structures may have poor vibro-acoustic behavior and in designs with complex shapes and material heterogeneities, its vibro-acoustic modeling brings new challenges in terms of accuracy and computational cost. Techniques such as model order reduction, homogenization, mesh and meshless methods (with and without periodicity conditions) and energy methods are typically employed to tackle this problem. Within homogenization techniques, an equivalent properties strategy can be utilized to equivalently represent complex structures into more simple ones (for example, a single layer panel).
Technical Paper

Rotation for a better tomorrow - SKF’s journey towards decarbonization

2024-06-12
2024-37-0033
Let’s start with the uncomfortable truth, climate change is happening, and the automotive industrial network is one of the main industries contributing to greenhouse gas emissions. SKF is an energy intensive business – directly using energy, mainly in the form of electricity and gas, in its operations around the world. In addition, SKF utilizes materials, predominantly steel, and services which can be energy and carbon intensive – such as transports and raw material in production and processing. The combined impact of these direct and indirect energy uses (scope 1, 2 and 3 upstream) generates an excess of over two million metric tons of CO2e per year. This figure would however be significantly higher were it not for the actions SKF has taken to reduce both energy and carbon intensity. In 2000, we were one of the first companies to actually start to report and set climate targets.
Technical Paper

Guided Port Injection of Hydrogen as An Approach for Reducing Cylinder-To-Cylinder Deviations in Spark-Ignited H2 Engines – A Numerical Investigation

2024-06-12
2024-37-0008
The reduction of anthropogenic greenhouse gas emissions and ever stricter regulations on pollutant emissions in the transport sector require research and development of new, climate-friendly propulsion concepts. The use of renewable hydrogen as a fuel for internal combustion engines promises to provide a good solution especially for commercial vehicles. For optimum efficiency of the combustion process, hydrogen-specific engine components are required, which need to be tested on the test bench and analysed in simulation studies. This paper deals with the simulation-based investigation and optimisation of fuel injection in a 6-cylinder PFI commercial vehicle engine, which has been modified for hydrogen operation starting from a natural gas engine concept.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

Model-Based Algorithm for Water Management Diagnosis and Control for PEMFC Systems for Motive Applications

2024-06-12
2024-37-0004
Water management in PEMFC power generation systems is a key point to guarantee optimal performances and durability. It is known that a poor water management has a direct impact on PEMFC voltage, both in drying and flooding conditions: furthermore, water management entails phenomena from micro-scale, i.e., formation and water transport within membrane, to meso-scale, i.e., water capillary transport inside the GDL, up to the macro-scale, i.e., water droplet formation and removal from the GFC. Water transport mechanisms through the membrane are well known in literature, but typically a high computational burden is requested for their proper simulation. To deal with this issue, the authors have developed an analytical model for the water membrane content simulation as function of stack temperature and current density, for fast on-board monitoring and control purposes, with good fit with literature data.
Technical Paper

Optimization of a Sliding Rotary Vane Pump for Heavy Duty Internal Combustion Engine cooling

2024-06-12
2024-37-0030
The benefits introduced by the replacement of conventional centrifugal pumps with volumetric machines for Internal Combustion Engines (ICEs) cooling were experimentally and theoretically proven in literature. In particular, Sliding Rotary Vane Pumps (SVRPs) ensure to achieve an interesting reduction of ICEs fuel consumption and CO2 emissions. Despite volumetric pumps are a reference technology for ICE lubrication oil circuits, the application in ICE cooling systems still not represent a ready-to-market solution. Particularly challenging is the case of Heavy-Duty ICE due to the wide operating range the pump covers in terms of flow rate delivered. Generally, SVRPs are designed to operate at high speeds to reduce machine dimensions and, consequently, the weight. Nevertheless, speed increase could lead to a severe penalization of pump performance since the growth of the friction losses.
Technical Paper

Acceleration of Fast-SCR Reactions by Eliminating “The Ammonia Blocking Effect”

2024-06-12
2024-37-0001
The recent and future trends of energy for heavy-duty vehicles are considered e-fuel, H2, and electricity, and the Selective Catalytic Reduction (SCR) system is necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel and H2 as a fuel. The Japanese automotive industry uses a Cu-zeolite based SCR catalyst since Vanadium is designated as a specific chemical substance, which the Ministry of Environment prohibits its release into the atmosphere. This study attempted purification rate improvement by controlling the NH3 supply with a mini-reactor and by simulated exhaust gas. Specifically, the experiment was done by examining the effect of the pulse amplitude, frequency, and duty ratio on the purification rate by supplying the NH3 pulse injection to the test piece Cu-chabazite catalyst. Additionally, the results of the reactor experiment were validated by numerical simulation considering the detailed surface reaction processes on the catalyst.
Technical Paper

The evolution of conventional vehicles' efficiency for meeting carbon neutrality ambition.

2024-06-12
2024-37-0034
In 2023, the European Union set more ambitious targets for reducing greenhouse gas emissions from passenger cars: the new fleet-wide average targets became 93.6 g/km for 2025, 49.5 g/km in 2030, going to 0 in 2035. One year away from the 2025 target, this study evaluates what contribution to CO2 reduction was achieved from new conventional vehicles and how to interpret forecasts for future efficiency gains. The European Commission’s vehicle efficiency cost-curves suggest that optimal technology adoption can guarantee up to 50% CO2 reduction by 2025 for conventional vehicles. Official registration data between 2013 and 2022, however, reveal only an average 14% increase in fuel efficiency in standard combustion vehicles, although reaching almost 23% for standard hybrids. The smallest gap between certified emissions and best-case scenarios is of 14 g/km, suggesting that some manufacturers’ declared values are approaching the optimum.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Optimizing Carbon Monoxide Emission Reduction Using Rice Husk Activated Carbon in Automobile Exhaust Systems

2024-04-29
2024-01-5054
This research effort is to optimize the conditions to minimize carbon monoxide (CO) gas emissions utilizing activated carbon derived from rice husks, an abundant agricultural waste. In the automobile industry, addressing vehicular emissions is crucial due to environmental ramifications and stringent regulatory mandates. This study presents an innovative and potentially cost-effective solution to capture CO emissions, mainly from motorcycles. The eco-friendly nature of using rice husks and the detailed findings on optimal conditions (20 m/s gas flow rate, 0.47 M citric acid concentration, and 30 g mass of activated carbon) make this research invaluable. These conditions achieved a commendable CO adsorption rate of 54.96 ppm over 1250 s. Essentially, the insights from this research could spearhead the development of sustainable automobile exhaust systems.
Technical Paper

Exploring the Mechanical Properties of Modified Pistachio Shell Particulate Composites through Experimental Investigation

2024-04-29
2024-01-5052
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Event

SLICES - WCX™ World Congress Experience

2024-04-27
Count on SAE International®—the global leader in technical learning for mobility professionals—to deliver emerging research, consumer metrics, regulatory standards and the latest innovations to advance mobility at the WCX World Congress event.
X